A PROOF OF RAABE’S TEST

PO-LAM YUNG

We give an alternative proof of one part of Raabe’s test via summation by parts
(aka Abel’s lemma). We will prove the following;:

Theorem 1 (Raabe’s test, part 1). If (x,) is a sequence of positive numbers, and
there exists a > 1 such that
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series is a sum of non-negative numbers, this proves that E T, is convergent.
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We remark that clearly the conclusion of the theorem would still hold, if (1)
holds true only for all sufficiently large n.



